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Trace Analysis for Conformance and 
Arbitration Testing 

Abstract-There are two aspects to testing: 1) the selection of appro- 
priate test inputs and 2) the analysis of the observed interactions of the 
implementation under test (IUT) in order to determine whether the 
observed input/output trace conforms to the IUT’s specification. The 
paper analyzes the second aspect with particular attention to testing of 
communication protocol implementations. Various distributed test ar- 
chitectures are used for this purpose, where partial inputloutput traces 
are observable by “local observers” at different interfaces. The error 
detection power of different test configurations is determined, based 
on the partial trace visible to each local observer and their global 
knowledge about the applied test case. The automated construction of 
trace analysis modules from the formal specification of the protocol is 
also discussed. Different transformations of the protocol specification 
may be necessary to obtain the “reference specification” which can be 
used by a local or global observer for checking the observed trace. This 
checking possibly involves the “nondeterministic execution” of the 
reference specification. Experience with the construction of an arbiter 
for the OS1 Transport protocol is described. 

Zndex Terms-Communication protocols, conformance testing, dis- 
tributed systems, formal specifications, protocol testing, testing, test 
oracle, test result analysis. 

I. INTRODUCTION 
WELL-KNOWN problem in system testing is the re- A alization of a reference, sometimes called “oracle, ” 

which determines whether a given interaction sequence 
observed during the test of an implementation under test 
(IUT) is valid or not. Such an oracle must clearly be re- 
lated to the specification of the IUT. This paper deals with 
the construction of such oracles, and their use in the pro- 
tocol testing process. 

In the area of communication protocol development and 
implementation, the protocol specification has an impor- 
tant role to play [7]. It is the basis for the protocol imple- 
mentations in the different systems which are designed to 
communicate with one another, and helps for the selection 
of test cases and the analysis of test results, For the de- 
scription of OS1 protocols and services, the use of formal 
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specifications is seriously considered [29]. The availabil- 
ity of such specifications make it possible to apply formal 
methods to the testing of protocol implementations [4]. 

We explore in the paper a testing approach where the 
concern for selecting the appropriate test input provided 
to the implementation under test (IUT) is separated as 
much as possible from the analysis of the observed output 
[ l l] .  We have therefore the following two concerns in 
relation with the testing of an implementation: 

1) the selection of the test cases, and 
2) trace analysis, that is, the determination whether the 

trace of input and output interactions observed during a 
test conforms to the specification. 

The first concern is important since the applied test in- 
put determines to a large extent what kind of malfunctions 
can be detected. 

The second concern is important since it will provide 
the verdict as to whether a faulty behavior was found in 
the IUT (oracle function). 

The two concerns are not independent of one another. 
On the one hand, the selection of test cases should take 
into account the detection of the possible errors that are 
foreseen in the underlying fault model through the obser- 
vation of the IUT’s output. On the other hand, the correct 
reaction of an IUT to a given test input can not always be 
predicted, either due to a nondeterministic test environ- 
ment, or because the specification admits several different 
behaviors for the IUT. The later parts of the test input 
may depend on outputs received during the initial part of 
the test(s). 

We assume in the following that the trace analysis is 
performed in a manner independent of the specific test 
input applied. While the validity of an output usually de- 
pends on previous test input, we assume that a trace anal- 
ysis module is available which is based on the IUT spec- 
ification, independent of the test case to be executed. (We 
note, however, as discussed below, that the error detec- 
tion power may often be improved if knowledge about the 
applied test input can be taken into account.) 

We take the view that the selection of test cases should 
be separated from the problem of deciding whether the 
IUT behaves according to the specification for a particular 
test case. As described in this paper, the second aspect 
can be automated if a formal specification of the IUT is 
available. In the case that such a specification is not avail- 
able, which is the case in most protocol and other soft- 
ware development projects, the test cases usually include 
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explicitly the allowed output expected from the IUT dur- 
ing test execution. This is a duplication of the information 
given in the specification. It is therefore desirable to val- 
idate the test cases in respect to the system specification. 
However, this is difficult to do if the system specification 
is written in an informal language. In the case that a for- 
mal system specification is available, test cases can be 
validated against it using an approach similar to the trace 
analysis described in this paper. 

While the above considerations apply not only to com- 
municate protocols, but to the problem of software de- 
velopment in general, protocol testing has certain partic- 
ularities which relate to the distributed nature of the 
implementations. Various distributed test architectures 
[21] are reviewed in Section 11. In most of these architec- 
tures, the test system is partitioned into several compo- 
nents, each accessing a local test control and observation 
point (TCOP) which allows only partial control and ob- 
servation of the IUT. 

The possibilities of trace analysis in such distributed 
test architectures, and the limitation of the error detection 
power is discussed in Sections 111 and IV. The problem 
of deriving the appropriate trace analysis module for a 
given test architecture and protocol specification is ad- 
dressed in Section V.  The experience with an example of 
this approach is presented in Section VI, which deals with 
trace analysis for the arbitration testing between two OS1 
Transport protocol implementations. Section VI1 contains 
the conclusions and a discussion of the relevance of trace 
analysis to OS1 conformance testing. 

11. TEST ARCHITECTURES 
As shown in the layered protocol architecture of Fig. 

1, a protocol entity has essentially two points through 
which it interacts with its environment, namely the upper 
and lower local service interfaces, sometimes called “ser- 
vice access points” (called USAP and LSAP in Fig. 1). 
For a protocol entity of layer N ,  these are the service ac- 
cess points for layer N and ( N  - l ) ,  respectively. In a 
local test environment, as shown in Fig. 2, the IUT (which 
is assumed to represent a protocol entity of layer N )  is 
directly controlled and observed by the test system through 
these two access points. They are the test control and ob- 
servation points (TCOP’s), which in general are the in- 
teraction points through which the test system (or parts of 
it) interact(s), directly or indirectly, with the IUT. 

In addition to this local test architecture, which corre- 
sponds to traditional software testing, the OS1 standard- 
ization community has identified 1211 a number of so- 
called external test architectures for which at least part of 
the test system resides outside the system containing the 
IUT, which is called “system under test” (SUT). They 
are included in the following architectures considered in 
this paper: 

1) Distributed Test Architecture: As shown in Fig. 3, 
the test system is divided into so-called upper and lower 
testers which access the upper and lower service inter- 
faces of the IUT, respectively. The lower interface is ac- 
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Fig. 2 .  Local test architecture. 
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Fig. 3 .  Distributed test architecture. 

cessed over distance and indirectly through the underlying 
communication service. 

2) Remote Test Architecture: This corresponds to the 
distributed test architecture where only the lower tester is 
used. Instead of the upper tester, the system under test 
may include a stack of several protocol layers above the 
layer being tested. 

3) Coordinated Test Architecture: This is a distributed 
test architecture where some form of coordination be- 
tween the lower and upper testers is established through 
the exchange of messages according to a so-called test 
coordination protocol through a (possibly separate) com- 
munication channel between the upper and lower testers. 
A particular case is the so-called ferry architecture shown 
in Fig. 4 [23], [30] where all interactions at the upper 
interface of the IUT are exchanged with the remote test 
system which therefore controls and observes both inter- 
faces, however indirectly. 
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4) Architecture f o r  Arbitration Testing: The architec- 
ture of Fig. 1 can be used for interoperability testing be- 
tween two different implementations of the same proto- 
col. If it is not known which implementation exhibits a 
deviation from the protocol specification, it is possible to 
introduce an observer, sometimes called “arbiter,” as 
shown in Fig. 5, which observes the exchange of protocol 
data units (PDU’s) between the two implementations in 
both directions and should detect any deviations from the 
protocol specifications. As only the exchanged PDU’s are 
observed (and not the interactions at the upper interfaces 
of the implementations), the error detection power of the 
observer is equal to the case of the remote testing archi- 
tecture, although the application of specific test cases is 
more difficult than in the latter case. 

In each of the testers involved in the above architec- 
tures, a distinction between aspects of test case selection 
and trace analysis can be made, as indicated in the figures. 
It is noted that an arbiter, as shown in Fig. 5 ,  only realizes 
the trace analysis function, while the aspect of test case 
selection is realized within the interworking systems by 
the users of the communication protocol. The arbiter 
should have a minimal impact on the communication be- 
tween the interworking systems (compare Figs. 5 and l). 
This is satisfied, for example, in the context of a local 
area network where an observer in one station may ob- 
serve the traffic between the other stations [2], [20], if a 
suitable modification to the network access module is 
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I 553 

Fig. 6 .  Example of multilayer test architecture 

made. The case of arbitration for higher layer OS1 pro- 
tocols is discussed in Section VI. 

Except for the remote test architecture, all test archi- 
tectures above assume that the upper interface of the pro- 
tocol IUT is accessible for testing purposes. If this is not 
the case, either the remote test architecture or a so-called 
“multilayer” test architecture must be used. Fig. 6 shows 
a particular example. 

111. LOCAL OBSERVERS AND THEIR REFERENCE 
SPECIFICATION 

Ideally, the trace of observed interactions performed by 
the IUT during a test is verified by global and direct ob- 
servation at the interfaces of the IUT, as possible for the 
local test architecture shown in Fig. 2. An error is de- 
tected if the observed trace t is not a valid trace according 
to the specification S of the IUT, which we write “ t  does 
not conform to S.” All cases of erroneous behavior gen- 
erated by the IUT can in principle be detected in this man- 
ner, as long as appropriate test inputs are chosen that lead 
the IUT to exhibit these behaviors. As discussed in the 
Introduction, this paper does not address the issues related 
to the selection of such test cases. In order to verify real- 
time properties of the IUT, such as related to timer spec- 
ifications, it is necessary to either analyze the interactions 
of the IUT in real time, or record, within the trace file, 
the real time of each interaction in the form of a time 
stamp. Possible deadlocks of the IUT can be detected by 
noticing that certain output interactions, expected accord- 
ing to the specification, are missing. 

An observer watching only the interactions at one of the 
interfaces is called a local observer. We call “Oi” the 
local observer at the interface i .  It observes only a partial 
trace which is obtained from the global trace by deleting 
all interactions not taking place at the interface i. We write 
“Pi(t)” for this trace, where “Pi” stands for “projection 
onto interface i ” .  

The observer compares the observed local trace with a 
specification which we call the reference specification of 
the observer. In the case of the test architecture of Fig. 2, 
the reference specification for a local observer at one of 
the interfaces can be obtained from the specification of 
the IUT by projection on the interface in question; in the 
case of the local observer at the remote service access 
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point (RSAP) of Fig. 3, its reference specification can be 
obtained through the composition of the specifications of 
the IUT and the underlying communication service and 
subsequent projection onto the interface RSAP (see for 
instance [ 191 or [8] for a discussion of the concept of pro- 
jection). In general, the reference specification of an ob- 
server is a specification which determines which traces 
(observed at the interface in question) conform to the sys- 
tem specification. It can be obtained from the protocol 
specification of the IUT and the test architecture [ l l ] ,  
[ 131, as explained below. 

In this paper we use the notation of LOTOS [18] for 
describing the composition of system modules and pro- 
jections. A system module is represented as a Lotos pro- 
cess of the form 

process-name [list of interfaces] 

and the composition of two modules M 1 [ 11, 121 and M2 
[I2, 13) interacting over the common interface I2 is writ- 
ten as 

hide I2 in (M1 [ I l ,  I21 1 [I21 1 M2 [I2,  131) 

which implies that I2 is not accessible to any other mod- 
ules in the system. Similarly, the projection of the module 
specification M 1 onto the interface I1 is written as a Lotos 
expression of the form 

hide I2 in M1 [ I l ,  I21 
which means that the interactions at interface I1 remain 
visible and must conform to the specification of M1, while 
at I2 any interaction may occur at any time (but not visible 
to the projected specification). 

Using this notation, the reference specification RSUT 
for the observer at the upper interface of the IUT (some- 
times called “upper tester,” UT, see Fig. 3) can be writ- 
ten as 

RSUT [USAP] : = hide LSAP in SPECIUT [ LSAP, 

where SPECIUT is the protocol specification for the IUT 
and if one assumes that the underlying communication 
service does not restrict the possible interactions at the 
lower interface of the IUT. Similarly, the reference spec- 
ification RSLT for the lower tester of Fig. 3 can be written 
as 

USAP] 

RSLT [ RSAP] : = hide LSAP, USAP in 
(SPECIUT [ LSAP, USAP] I [LSAP] I 
LS [ RSAP, LSAP] ) 

where LS is the specification of the underlying commu- 
nication service. Another example is the multilayer test 
architecture of Fig. 6. Here, the reference specifications 
for the local observers at the interfaces SAPS and SAP3b 
observing indirectly the implementation of the protocol 
PS3 can be written as 

RSUT34 [SAPS]: =hide SAP4, SAP3a, SAP3b in 
(SS3 [SAP3b, SAP3a] 

I [ SAP3a] I PS3 [ SAP3a, SAP41 
I [SAP41 1 PS4 [SAP4, SAPS]) 

and 
RSLT34 [ SAP3bl : = hide SAP3a, SAP4, SAPS in 

(SS3 [ SAP3b, SAP3a] 
I [ SAP3aIl PS3 [ SAP3a, SAP41 
I [ SAP41 I PS4 [ SAP4, SAPS] ) 

IV. ERROR DETECTION POWER OF LOCAL OBSERVERS 
A .  Limited Error Detection Power 

In general, the error detection power of a local observer 
is less than perfect. It is conceivable that the IUT exhibits 
a faulty behavior, say a trace t which does not conform to 
S ,  the specification of the IUT, but a local observer does 
not detect an error since the projection of t on the ob- 
served interface results in a local trace which is allowed 
according to the reference specification of the observer. 

As an example, we consider the simplified OS1 Trans- 
port protocol class 2 [22]; the state transition diagram of 
Fig. 7 defines the allowed execution orders of service 
primitives, and sending and receiving of protocol data 
units (PDU’s). An allowed execution trace is, for in- 
stance, the following 

t l  = < TCONreq, s-CR, r-CC, TCONconf, 
TDATAreq, s-DT, . . . > 

where the service primitives TCONreq, TCONconf, and 
TDATAreq are executed at the “upper” interface USAP 
(see Fig. 2),  and the sending and receiving of the PDU’s 
CR, CC, and DT are executed at the “lower” interface 
LSAP. The notation “s-CR” (or “r-CR”) means the 
sending (or reception) of the connect request (CR) PDU. 
The local observer OusAp at the upper interface USAP 
would therefore observe the trace 

< TCONreq, TCONconf, TDATAreq, . . . > 

while a local observer OLsAp at the lower interface would 
observe the trace 

< s-CR, r-CC, s-DT, . . . >.  

Let us consider a fault where the IUT does not send the 
required CR PDU. The resulting global trace would be 

t2 = < TCONreq, TCONconf, TDATAreq, 
S-DT, . . . >. 

This fault would not be detected by the local observer 
OusAp, since it would observe a valid local trace, in fact 
PusAp ( t2)  = PusAp ( t l ) .  However, this fault would be 
detected by a local observer OLsAp, since it would observe 
the trace 

< S-DT, . . . > 

which is not allowed according to PLsAp ( S ) .  
It is important to note that local observers alone do not 

detect all errors, at least in most cases. While the above 
error would be detected, the following error would not be 
detected by OusAp nor OLsAp. We assume that the IUT 
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Fig. 7 .  State diagram of a transport protocol specification. 

sends the CR PDU, but invokes the TCONconf before, 
thus leading possibly to the trace 

t3 = < TCONreq, TCONconf, s-CR, r-CC, TDATAreq, 
S-DT, . . . > 

a)  Diagnostic Information Transfer: Each local ob- 
server Oi indicates whether it detected an error based on 
its reference specification. This corresponds to the dis- 
cussion of the example above, where an error would be 
found in the trace t2, but not in the traces t3 nor t4. 

b) Transfer of Local Trace: Each local observer Oi 
provides the global analyzer with the locally observed 
trace ti, that is the sequence of observed interactions and 
their parameter values. Such an approach can be realized 
through a test architecture as shown in Fig. 4.  With this 
approach, many data flow related faults can be detected, 
such as the error in trace t4. 

c) Transfer of Local Trace with Timing Informa- 
tion: In addition to the information provided under point 
b), it is assumed that the local observers have synchro- 
nized clocks which are used to indicate for each observed 
interaction the real time of its occurrence. If the clocks 
are well enough synchronized, this may allow the global 
observer to detect the error in trace t3. 

Information transfer at level c) provides the global ana- 
lyzer with complete information about the observed inter- 
actions. Therefore all errors can be detected with this 
methods, provided the timing information is precise 
enough. However, the realization of synchronized clocks 
in a distributed environment is not easy (see for instance 
[16]). Therefore information transfer at level b) is used 
more frequently. 

Level b) communication allows the detection of many 
sequencing errors, namely when the sequences observed 
at the two sides are inconsistent. An example is the trace 

This global trace has the same local traces as the valid 
trace t l .  Therefore no error is detected. 

While the above examples relate to the order of exe- 
cution of interaction primitives, other errors may relate to 
the interaction parameters and the data flow between them. 
The analysis of possible data flows within the specifica- 
tion can also be used for deriving appropriate test input 
for covering data flow related faults [27]. An important 
property of communication protocols related to data flow 
is the reliable transfer of user data. For the Transport ex- 
ample considered above, this means that the user data pa- 
rameter of the TDATAreq primitive, in traces such as t l ,  
must be equal to the user data parameter in the corre- 
sponding data ( D T )  PDU. An example where this is not 
true is the faulty trace (we assume x l  not equal to x2) 

t4 = < TCONreq, s-CR, r-CC, TCONconf, 
TDATAreq( x l  ), s-DT( x2), . . . > . 

Most data flow relations, such as the one above, are not 
local properties, that is, their violation cannot be detected 
by local observers. 

B. Improving the Error Detection Power of Local 
Observers 

Error detection power of local observers can be in- 
creased by the following two approaches (see also [ 111- 

1) Communication Between Observers and Global, In- 
direct Observation: In most test systems, there is some 
global instance which determines the test input to be ap- 
plied, and provides for the detection of errors. We assume 
that this global error detection function is provided by a 
so-called global analyzer which bases its error detection 
diagnostic solely on information received from the local 
observers. Several level of information transfer from the 
local observers to the global analyzer can be considered: 

1131 1. 

t5 = < TCONreq, s-CR, r-DR, TCONconf, . . . >, 
where disconnection occurs at the “lower” interface, 
while a connection is established at the “upper” side. 
Even sequencing errors where no such inconsistency ex- 
ists, such as in trace t3, may be detected if data flow re- 
lations are taken into account. If, for instance, the TCON- 
conf contains a parameter value which depends on a 
parameter value received in the CC PDU, the sequencing 
error of t3 should usually be accompanied with an error 
in the TCONconf parameter, since the IUT evoking the 
TCONconf too early has not yet received the CC PDU for 
correctly determining the TCONconf parameter. 

2) Test Case Specific Trace Analysis: The second ap- 
proach to improving the error detection power is to pro- 
vide each local observer with information about the test 
input supplied at the other interfaces. For instance, if the 
local observer OLsAp knows in advance the user data to be 
applied at interface USAP in the TDATAreq interaction, 
it will be able to detect the error in trace t4. This approach 
is the basis for many standardized OS1 test cases [2 11 used 
in the distributed test architecture of Fig. 3. However, 
this approach can not be used for random testing where 
the test input is (to a certain extent) randomly chosen, 
since in this case the test input is not known in advance. 

Formally, the additional knowledge of the local ob- 
server can be expressed by its reference specification. This 
specification can take into account the known behavior of 
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the test modules providing input to the other interfaces. 
For example, if UTTl is the specification of the upper 
tester for a given test case using the architecture of Fig. 
3,  the reference specification for the lower tester at the 
interface RSAP can be written as 

RSLTTl [ RSAP] : = hide LSAP, USAP in 
(UTT1 [USAP] 

1 [ USAP] 1 SPECIUT [ LSAP, USAP] 
I [ LSAP] I LS [ RSAP, LSAP] ) 

which in general accepts less traces than the reference 
specification RSLT given in Section 111. 

The semiadaptive testing often proposed for protocol 
conformance testing [lo], [3] also takes advantage of this 
approach. In this case, a complete test suite consists of a 
number of predetermined test cases. For each test case, 
the observer function at each of the interfaces knows the 
test input to be applied at the other interface, and this is 
taken into account for the detection of errors. The next 
test case to be executed is determined by the test system 
based on the global results of test cases previously exe- 
cuted. Communication between the different parts of the 
test system are therefore only required to communicate 
the local test diagnostics and the identity of the next test 
case to be executed, but not the details of its definition. 
Various methods for such test coordination procedures 
have been described [241, 131, 1211. 

C. Influence of the Underlying Communication Service 
and Multilayer Protocol Testing 

In the case of most testing architectures, such as those 
shown in Figs. 3,  4 ,  5 ,  and 6 ,  the error detection power 
of the observers is further decreased due to the fact that 
the “lower” interface of the IUT are not observed di- 
rectly, but only through an underlying communication 
service. The latter usually implies delays and possible 
queuing of messages in transit. Even if the communica- 
tion service has the FIFO property (in a given direction, 
messages are received in the same order as they were 
sent), the order of interactions observed may be different 
from the order they occurred at the IUT interface due to 
message cross-over within the communication service. 

In the case of multilayer protocol testing as shown in 
Fig. 6 ,  similar cross-overs of interactions may occur for 
the indirect observation of the upper service primitives of 
the PS3 protocol entity observed at the SAP5 interface, 
and the lower service primitives of the PS4 protocol entity 
observed at the remote SAB3b interface. However, the 
situation is more difficult to analyze since the behavior of 
the protocol entity through which these interactions are 
observed is usually much more complicated than the un- 
derlying communication service. In addition, it can usu- 
ally not be assumed that the implementation of this entity 
is without faults. Therefore, in practice, the different pro- 
tocol layers are usually tested in conjunction, using the 
reference specifications RSUT34 and RSLT34 defined in 
Section 111. 

V .  DERIVING A TRACE ANALYSIS MODULE FROM THE 

REFERENCE SPECIFICATION 

A .  General Considerations 

In the section above, various configurations of local ob- 
servers and their error detection power were discussed. 
Each observer compares the locally observed (partial) 
trace with its reference specification in order to determine 
whether an error can be detected. The discussion in this 
section deals with the construction of a trace analysis 
module which actually does this comparison. The trace 
analysis module should be derived from the reference 
specification, and should be in such a form that it reads 
the observed trace, one interaction after the other, and 
reports, after each interaction considered, whether an er- 
ror occurred up to this point. 

If the reference specification is given in an executable 
form, it may be used for trace analysis by having it exe- 
cuted in a simulated manner. However, the following 
points must be taken into account: 

a) Any output interaction specified by the reference 
specification corresponds to an input to the trace analysis 
module received from the IUT. The trace analysis module 
verifies that the received parameter values are equal to the 
parameter values specified for the output in the reference 
specification. 

b) The reference specification may be nondeterminis- 
tic, in the sense that a given trace may lead to more than 
one internal “state” of the specification. The allowed 
subsequent interactions may be different for these differ- 
ent states. Therefore the reference specification must be 
simulated in a nondeterministic manner, considering all 
possible branches in parallel. Only if for the next inter- 
action of the observed trace, there is no branch for which 
this interaction is possible, then an error is detected. In 
addition, any branch for which the next interaction is not 
possible may be deleted for further consideration in the 
nondeterministic execution of the reference specifica- 
tion. The interested reader is referred to [15] and [28] for 
further discussion and examples. 

The following subsections discuss the derivation of an 
analysis module for different kinds of reference specifi- 
cations. 

B. Finite State Machine Specijications 

In the case that protocol specifications are given as fi- 
nite state machines, the construction of trace analysis 
modules is relatively straightforward. The projection op- 
eration Pi is performed by deleting from the state diagram 
all input/output labels which do not occur at the interface 
i. For example, the Transport protocol specification of 
Fig. 7 leads to a reference specification for the “lower” 
observer OL,y.Ap shown in Fig. 8. In general, the specifi- 
cation may be simplified by reducing the state machine to 
an equivalent form [ 11, thus avoiding spontaneous tran- 
sitions without output (i .e. ,  transitions with no input or 
output occurring at interface i ) .  The composition opera- 
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Fig. 8 .  State diagram of a reference specification for lower observer 

tion is also relatively simple [19J; it may, however, lead 
to a certain state space explosion. 

In order to transform outputs to inputs (see point a) 
above and obtain a state diag: Im where all transitions have 
a single input interaction, tr, mitions with both input and 
output (such as the transition labeled “r-DR, s-DC” in 
Fig. 8) are split into two transitions and an intermediate 
state. Then all output interactions are converted to input. 
If the resulting state machine is deterministic, error de- 
tection transitions can be added as follows. For each state 
of the machine and each input for which the machine does 
not include a transition, an error detection transition 
should be included leading to a “detected error” state. 

If the resulting state machine is not deterministic, it may 
either be converted into an equivalent deterministic ma- 
chine [l], or it may be executed in a nondeterministic 
manner, as described under point b) above. 

C. Full Specijications Using a Formal Description 
Technique 

Finite state machines have a limited modeling power. 
So-called formal description techniques (FDT) have been 
developed for writing full specifications of OS1 commu- 
nication services and protocols [29]. It is an advantage of 
formal protocol specifications written in an FDT, that 
trace analysis modules for local observers can be derived 
from such specifications using similar transformations as 
those described for finite state machines above. 

The techniques Estelle 1141 and SDL [25] are based on 
an extended finite state machine model which allows the 
specification of a system of interconnected extended state 
machines. The different machines communicate through 
the exchange of messages. For the derivation of trace 
analysis modules, the transformations described in Sec- 
tion V-B can be applied with proper consideration of in- 
teraction parameters. This means that during the transfor- 
mation from output to input interactions, as described 
above, a condition must be associated with the new input 
transition which verifies that the received interaction pa- 
rameters are equal to the values specified for the output 
in the reference specification. The transformation from a 
nondeterministic specification into a deterministic one is 

not easily feasible for FDT specifications; therefore the 
trace analysis module has to execute the resulting speci- 
fication in a nondeterministic manner, as explained under 
point b) in Section V-A. 

In the case of the LOTOS language [ 181, the situation 
is similar. However, the rendezvous interactions are not 
distinguished as input and output; instead individual pa- 
rameters of these interactions may be input or output, as 
indicated by the notation “?” or “!”, respectively. 
Therefore the transformation from output to input must be 
applied to each output parameter of an interaction. This 
means that, for each occurrence of “! ( value expres- 
sion )” within the parameter list of a Lotos action prejx 
representing an interaction, the occurrence should be re- 
placed by the text ‘‘?v:rype-id” where i) is a new param- 
eter identifier and type-id is the identifier of the data type 
(Lotos sort) of the ( value expression ).  In addition, the 
action prejx should be associated with the guard “[v = 
( value expression ) I ” ,  possibly to be combined through 
a logical and with other guards already pre: :nt. The ob- 
tained Lotos specification should be executed in a simu- 
lated nondeterministic manner, as explained in Section V- 
A. An existing Lotos interpreter [ 171 has been adapted for 
this purpose [9]. 

VI. A PRACTICAL EXAMPLE: TRANSPORT ARBITER 

A. Arbitration Testing 

In the case of arbitration testing, as shown in Fig. 5, 
an arbiter observes the PDU’s exchanged between two 
protocol implementations with the purpose of detecting 
any cases where one of the implementations (IUT’s) does 
not conform to the protocol specification. Since both im- 
plementations must be checked, we suggest an internal 
structure for the arbiter which contains two trace analysis 
modules, one for each observed IUT, as shown in the 
figure. The observed trace of PDU’s, received from the 
different IUT’s, is recorded in a trace file for eventual 
manual inspection or later processing. In addition, the or- 
acle function is performed on the observed trace sepa- 
rately for each IUT. The two trace analysis modules check 
whether the observed trace is in contradiction to the spec- 
ification of the corresponding IUT. 

For each of the two trace analysis modules, the refer- 
ence specification is equal to the one for a lower tester 
(RSLT) in the distributed test architecture (see Fig. 3) as 
defined in Section 111. This takes care of the possible 
queuing of PDU’s within the underlying communication 
service. Therefore only the properties visible at the 
“lower” interface of the IUT’s can be checked by the 
arbiter. Many protocol properties, such as correct transfer 
of user data for instance (see also trace t4 in Section 
IV-A) cannot be checked. Many of these properties could, 
however, be verified by checking the correct operation of 
the next higher protocol layer which relies on thes,: prop- 
erties for its correct operation. 

It is assumed in the following that the observed PDU’s 
are exchanged through a reliable communication service. 
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This assumption simplifies the analysis of protocol con- 
formance. If errors may occur within the underlying com- 
munication service, it is difficult to decide whether an er- 
ror observed in a given PDU is due to a transmission error 
in the lower service or to a faulty behavior of the IUT 
from where the PDU originated. 

B. Constructing an Arbiter for the OSI Transport 
Protocol 

We have applied the principles discussed in the sections 
above to the implementation of an arbiter for the OS1 
Transport protocol classes 0 and 2. The reference speci- 
fication for trace analysis was essentially derived from a 
formal specification of the protocol (written in an Estelle 
dialect) which was previously used for deriving an imple- 
mentation [ 5 ] .  The transformations performed for this 
purpose are similar to those discussed in Section V ,  and 
take also into account the interaction parameters and ad- 
ditional state variables. These transformations were per- 
formed by hand; no automated tool was available for this 
purpose. It turned out that the resulting specification of 
the trace analysis module was deterministic, which sim- 
plified its execution. 

The arbiter was implemented using a semiautomated 
approach [ 5 ] .  The arbiter was first specified in Estelle. 
After this specification was sufficiently completed, it was 
automatically translated into Pascal and combined with 
run-time support routines, including in particular an in- 
terface to the underlying Network service (provided by an 
X.25 network) and functions for operator control and 
copying the trace onto a file for possible later inspection. 

The Estelle module structure of the arbiter is shown in 
Fig. 9(a). The Network-medium provides a Network ser- 
vice access point. The Manager module manages the two 
Network connections to the respective computers contain- 
ing the two IUT’s. It also includes a PDU decoding func- 
tion and writes the trace file. The decoded PDU’s are 
passed to each of the two Side modules which perform 
the trace analysis for the two respective IUT’s. The in- 
ternal structure of the Side modules is shown in Fig. 9(b) 
and is closely related to the structure of the original for- 
mal protocol specification. Each AP module checks a sin- 
gle Transport connection. Since the class 2 protocol al- 
lows for multiplexing, several such connection may be 
established over the same Network connection. 

The Mapping module looks after multiplexing and per- 
forms a number of checks on the observed PDU’s. A pro- 
cedure Sending-check is derived from the original pro- 
tocol specification. It checks conditions for the PDU’s sent 
by the corresponding IUT. A Receiving-check proce- 
dure does the same tests for the PDU’s to be received by 
the corresponding IUT. This allows the arbiter to know 
whether the corresponding IUT is expected to send an 
ERR PDU in response to an erroneous PDU received. 

Each AP module is an extended finite state machine 
derived from the AP module of the original protocol spec- 
ification. Its state diagram is shown in Fig. 10. Note that 
the transitions leading to the “detected error” state (see 

trace 

Manager 1 P opera tor 

Network-medium LzJJ 

Fig. 9. (a) Estelle structure of arbiter. (b) Estelle structure for side module 
of arbiter. 
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Fig. 10. State transition diagram for analysis module of transport arbiter. 

Section V-B) are not shown on the diagram; the states 
error, wfCC-er, and wftresp-er in the diagram are 
caused by valid transitions of the protocol machine which 
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can be reached when the IUT receives certain invalid 
PDU’s. 

In addition to using the formal protocol specification 
for deriving the trace analysis rules, we also studied the 
OS1 standard [22] in order to validate these rules. It turned 
out that there was a small number of inconsistencies be- 
tween the formal specification and the standard. It is not 
easy to make a comparison of a formal specification with 
a standard written in natural language. It would therefore 
be useful if recognized and validated formal specifications 
of protocol standards would be available. 

Several different Transport protocol implementations 
were tested using the configuration of Fig. 5 [6]. It was 
found that the arbiter was useful for detecting a large part 
of the errors in the implementations (some of the errors 
were not visible at the lower service interfaces). It seems 
that an arbiter can be especially useful in the following 
cases: 

1) capturing the errors which occur occasionally or 
cannot be easily reproduced, 

2 )  capturing errors which occur only after interactions 
have taken place repeatedly for a long time, 

3) recording unexpected events which come from the 
lower layer and could result in a misbehavior of the IUT, 
4) monitoring the execution of two implementations 

which have been tested separately and have just been put 
into use, and 

5) being used as a first filter for debugging before more 
costly tests are undertaken. 

VII. CONCLUDING DISCUSSION 
There are two aspects to testing: 1) the selection of ap- 

propriate test inputs and 2) the analysis of the observed 
interactions of the implementation under test (IUT) in- 
cluding input and output in order to determine whether 
the observed trace is conform to the IUT’s specification. 
While standardized test suites for OS1 communication 
protocols combine these two aspects into a single test case 
description, this paper explores the advantages of keeping 
the two aspects separate. 

This paper explores the automated analysis of the ob- 
served interaction trace in respect to the IUT’s specifica- 
tion. It is clear that such an analysis can only be auto- 
mated if the specification is given in a formal, machine- 
processable form. This is one of the reasons why the de- 
velopment of formal descriptions of OS1 protocols and 
services in a formal description technique (FDT) is ad- 
vocated. They cannot only be used for automating the 
implementation testing process, as described here, but can 
also play a major role during the validation of the protocol 
design, and can be used for partly automating the imple- 
mentation process [4]. 

It is important to note that most test architectures used 
for protocol implementation testing allow only for partial 
control and observation of the IUT interactions [ 131. In 
most situations, one or several local observers record and 
analyze the partial interaction trace visible at the interface 
which they observe. Many important error types cannot 

be detected by such local analyzers unless some global 
information is introduced. There are essentially two pos- 
sible approaches: 

I )  Staric Knowledge: Each local analyzer has some a 
priori knowledge about the applied test input at the other 
interfaces; or 

2) Dynamic Knowledge: Some global analyzer obtains 
a copy (possibly with real-time information) of the partial 
traces observed at the different interfaces. 

Both approaches lead to satisfactory error detection 
power. 

For established OS1 protocol standards, such as X.25, 
FTAM, or MHS (X.400), a number of standard test cases 
are defined by interested groups and/or standardization 
bodies. These test cases not only include the inputs to be 
applied to the IUT, but also describe the possible outputs 
observed, and for each possible output whether its occur- 
rence means a successful test, the detection of an error, 
or an inconclusive test outcome. The latter information is 
also provided by the trace analysis discussed in this paper. 
Nevertheless, the automated trace analysis based on the 
specification of the IUT is useful in this area for the fol- 
lowing purposes. 

First, it can be used to validate the predefined test cases. 
This is an important point, since it is difficult in general 
to check that the error detection diagnostic given by a pre- 
defined test case, such as those used for OSI, is conform 
to the protocol specification. In fact, the automated trace 
analysis described in this paper could be used to validate 
a predefined test case by comparing the error detection 
diagnostic given by the test with the diagnostic of the au- 
tomated trace analysis, and this for all the traces foreseen 
by the test case [9]. 

Secondly, automated trace analysis can be used in sit- 
uations where predefined test cases cannot be used, for 
example: 

1) During conformance testing of an implementation, 
it is often desirable to execute tests which have not been 
foreseen by the implementor. New test cases may be se- 
lected for this purpose. A similar situation occurs in hard- 
ware testing where test cases are sometimes selected ran- 
domly. 

2) While standard OS1 conformance test cases are de- 
fined for verifying conformance of an implementation in 
respect to the protocol specification, each implementation 
usually has to satisfy additional requirements which are 
system-specific. Specific test cases for verifying these re- 
quirements must therefore be designed and executed. 

3) Another case where the standard OS1 conformance 
test cases cannot be used is arbitration testing which is 
performed when two implementations, already well 
tested, do not intenvork properly. A test architecture as 
shown in Fig. 5 is normally used, and the applied test 
input is not standardized. 

4) Finally, the standard test cases are usually not used 
for the initial debugging of a new implementation. In this 
early implementation phase, it is often desirable to be able 
to execute ad hoc test cases and verify the behavior of the 
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implementation in these situations. Similarly, specific 
tests may be selected during conformance resolution test- 
ing [2  11 to check particular conformance requirements. 

Before closing, it is important to note that the auto- 
mated trace analysis discussed here is only useful in de- 
tecting a fault in an IUT if the applied test input is able 
to lead the IUT into a situation where it exhibits an error 
due to that fault. Therefore the selection of appropriate 
test input is of prime importance. Although test input can 
also be selected based on the system specification (for ap- 
plication to communication protocols, see for instance 
[26], [27]), it seems that it is very difficult to fully auto- 
mate the test selection process. This paper tries to show 
that the trace analysis aspect of testing is "orthogonal" 
to the test input selection issues, and to explore its auto- 
mation based on a formal system specifications. These 
principles are not new in the area of hardware design, 
however, the point of this paper is the application of these 
principles to communication protocols. They may also be 
applicable in other software areas. 
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